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Method Reference Single-cell data Dimensionality 
reduction 

Metric to as-
sess cell-to-cell 

distances 

Clustering algo-
rithm 

Graph -building algo-
rithm / ordering repre-

sentation 

Trajectory assessment Software availa-
bility 

SPADE (Qiu et al., 
2011) 

Mass Cytometry 
Data and Flow 
Cytometry Data 

NA L1 distance Agglomerative 
clustering 

Minimum Spanning Tree 
(MST) 

NA R/Bioconductor 

Wanderlust (Bendall et 
al., 2014) 

Mass Cytometry 
Data 

NA Cosine distance NA K-Nearest Neighbours 
Graph (K-NNG) 

A single non-branching tra-
jectory is assessed from an 
average of “shortest path”- 
trajectories over an ensemble 
of l-out-of-k-nearest-neighbor 
graphs (l-k- NNGs) 

Matlab based 

viSNE (Amir et al., 
2013) 

Mass Cytometry 
Data and Flow 
Cytometry Data 

t-Distributed 
Stochastic 
Neighbor Em-
bedding (t-SNE) 

Distance in low-
dimensional 
space 

NA NA NA Matlab based 

Monocle (Trapnell et 
al., 2014) 

Single-cell RNA-
seq 

Independent 
Component 
Analysis (ICA) 

Distance in low-
dimensional 
space 

NA Minimum Spanning Tree 
(MST) 

Longest path through MST is 
used to define branching 
trajectories and ordering in 
“pseudotime” 

R/Bioconductor 

Jaitin et al 
2014 

(Jaitin et al., 
2014) 

Single-cell RNA-
seq 

NA Correlation Hierarchical clus-
tering + manual 
definition of seeds 

Circular projection (CAP) 
of posterior probabilities 
of association with the 
model’s classes  

NA Not available 

Buettner et 
al. 2015 

Buettner et 
al. 2015 

Single-cell RNA-
seq 

Non-linear PCA Distance in low-
dimensional 
space 

Hierarchical clus-
tering with a fix 
number of clusters 
on the 2D non-
linear PCA plots 

NA NA Multiple platforms 

SCNS Moignard et 
al 2015 
 

qRT-PCR Diffusion plot 
methodology 

Distance in low-
dimensional 
space 

NA Discretization of single-
cell expression profiles 
to binary states and 
connection of those 
states that differ in the 
expression of only one 
gene 

NA F# scripts for 
Linux, Windows 
and Mac OS X 
 

PCA (Dalerba et 
al., 2011; 
Treutlein et 
al., 2014) 

Single-cell RNA-
seq 

Principal Com-
ponent Analysis 
(PCA) 

Distance in low-
dimensional 
space 

NA NA NA Multiple platforms 
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NA: Not Applicable 
 
Supplementary Table 1: Computational methods for the assessment of cell-state hierarchies. The table shows a list of published ap-
proaches for the assessment of cell-state heterogeneity from single-cell data together with their main methodological features. The last row in-
cludes the standard Principal Component Analysis (PCA) to reflect its use in single-cell data analysis; in this case two references are provided as a 
non-exhaustive list of examples.  
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A)                                                                            B) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 1. Statistical support for cell-state hierarchies obtained in differentiating myoblast sam-
ples at 4 timepoints (0, 24, 48 and 72h) from (Trapnell et al., 2014). A. Similarities of hierarchies upon random 
gene subsampling. The figure represents the distribution of similarities between a reference cell-state hierarchy 
and the 100 hierarchies obtained when 100 random sets of 50% of genes are subsampled. B. Similarities of hier-
archies upon random cell replacement with in silico cell replicates. The figure represents the distribution of similar-
ities between a given cell-state hierarchy and the 100 hierarchies obtained when 100% of individual cells are sub-
stituted by a randomly chosen in silico replicate. One thousand in silico replicates were generated for each cell 
with default parameters. Four distributions are represented in each panel corresponding to the hierarchies ob-
tained at different timepoints: 0, 24, 48 and 72 hours (blue, green, orange and red respectively). A distribution of 
similarities with a high median and a low variance is indicative of a cell-state hierarchy robust to variations in the 
data. See Supplementary Text for details. 
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Supplementary Figure 2. Use of Spearman rank correlation between the shortest distance for all pairs of cells is 
a valid similarity measure between two graphs. The figure shows the distribution of Spearman rank correlation 
values obtained upon random gene subsampling for increasing numbers of subsampled genes (5%, 25%, 50%, 
75% and 95%). Each distribution corresponds to 100 hierarchies obtained when 100 random sets of a given per-
centage of genes is subsampled. Cell-state hierarchies are assessed for single-cell libraries corresponding to 
timepoint 0h in Trapnell et al., 2014 on their log-transformed FPKM values using the first two dimensions of a 
dimensionality reduction with Independent Component Analysis (ICA) and a Minimum Spanning Tree (MST). See 
Supplementary Text for additional details. 
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SUPPLEMENTARY TEXT 

1) Before starting using Sincell 
 
The Sincell workflow starts from an expression matrix gathering the gene expression levels for every single-cell in 
the experiment. Before starting to use Sincell, quality control to filter out individual cells from the analysis need to 
be performed by the user. Expression levels also need to be normalized to account for library size or technical 
variability (e.g. through the use of spike-in molecules). Variance stabilization is also recommended (e.g. through 
log-transformation). 
 
Some Sincell functions are computationally intensive. Implementation of some of Sincell's algorithms in C++ as 
well as parallelization of Sincell’s functions decreases run times. However, working with a gene expression matrix 
of several thousand genes can lead to long computing times depending on the available hardware. If time or 
computation capacity is an issue, we recommend the user restrict the analysis to the most variable protein coding 
genes in the dataset. These genes drive most of the signal to assess cell-state hierarchies and restricting the 
analyses to them should not bias the final results. Typically, running the full set of Sincell's routines on an expres-
sion matrix with 2000 genes and 180 individual cells takes less than one hour on a laptop with 8GB RAM. Never-
theless, selecting the most variable genes is not straightforward due to the mean-variance relationship. To select 
the most variable genes we refer the user to the two following excellent tutorials: 
 
i) the HSC Harvard Catalyst Single-Cell Workshop 2014: RNA-seq 
(http://pklab.med.harvard.edu/scw2014/subpop_tutorial.html; Section "Identifying highly variable genes")  
 
ii) Bioconductor RNA-Seq workflow (http://master.bioconductor.org/help/workflows/rnaseqGene/#de; Section "The 
rlog transformation".  
 
Quoting from this last document by Love M, Anders S and Huber W: “Many common statistical methods for ex-
ploratory analysis of multidimensional data, especially methods for clustering and ordination (e.g., principal-
component analysis and the like), work best for (at least approximately) homoscedastic data; this means that the 
variance of an observed quantity (here, the expression strength of a gene) does not depend on the mean. In 
RNA-Seq data, however, variance grows with the mean. For example, if one performs PCA (principal components 
analysis) directly on a matrix of normalized read counts, the result typically depends only on the few most strongly 
expressed genes because they show the largest absolute differences between samples". 
 
To avoid this bias, we recommend the user perform a variance stabilizing transformation. The simplest way is 
taking the logarithm of the normalized count values plus 10 (or 100) pseudocounts. More sophisticated strategies 
are provided by the function rlog and other variance stabilizing transformations discussed in the Bioconductor 
package DESeq2 (http://www.bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.pdf). 
 
Restricting the analysis to protein coding genes can help further narrow down the number of genes used in the 
calculations. 
 
Once quality control, normalization and variance stabilization (e.g. log transformation with 100 pseudocounts) 
have been performed and the most variable genes identified (e.g. the 2000 most variable protein coding genes), 
we are ready to start working with Sincell.  
 
 
2) Novel graph-building algorithms presented in Sincell: 
 
We present here two graph-building algorithms that can be used to infer the progression through a continuum of 
intermediate cell states: the Maximum Similarity Spanning Tree and the Iterative Mutual Clustering Graph (IMC). 
Both algorithms start from a cell-to-cell distance matrix as an input, and compute a connected graph where nodes 
represent cells and edges represent their kinship as intermediate cell-states. The weight of an edge connecting 
two cells corresponds to the original distance between them. The algorithms start with all nodes unconnected, 
treating them as clusters of size 1. 
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Maximum Similarity Spanning Tree (SST) 
 
In the first iteration, the two clusters with the lowest distance are connected forming a cluster of size 2. In a new 
iteration, distances among clusters are recomputed and a new connection is added between the next two clusters 
with the shortest distance. The distance between a cluster of size higher than one and another cluster is the low-
est distance between any of their constituent cells. The process is repeated until there are no cells unconnected. 
 
In contrast to the Minimum Spanning Tree (MST) algorithm (that minimizes the total sum of the weights of any 
possible spanning tree), the SST algorithm prioritizes the highest similarities between any two groups of cells, 
proceeding in an agglomerative way that represents intermediate cell states. In some cases, MST and SST can 
lead to the same graph. 
 
Iterative Mutual Clustering Graph (IMC) 
 
In the first iteration, a connection between two clusters A and B is added if A is among the closest k nearest clus-
ters of B and B is among the closest k nearest clusters of A. This process is iterated until there are no unconnect-
ed cells. As with SST, the distance between a cluster of size higher than one and another cluster is the lowest 
distance between any of their constituent cells. 
 
Note on the assessment of Minimum Spanning Tree algorithms 
 
MST algorithms usually provide a single MST solution. However, in theory there could be multiple, equally optimal 
solutions. This could happen if several equally parsimonious paths exist or if two or more edges have the same 
lengths (Salipante and Hall, 2011). Quoting Salipante and Hall 2011: “In such situations, only one of the possible 
shortest paths is arbitrarily selected during tree construction, which has the potential to significantly affect the 
structure of the tree. In light of this issue, it has been appreciated that the solution to the MST problem is better 
considered a minimum spanning network (MSN), in which all MST solutions are combined into a single graph that 
demonstrates all equally parsimonious paths”. Nevertheless, in our case the probability of finding several pairs of 
individual cells with the exact same gene expression profile distance is virtually zero. Therefore, we think this type 
of potential instability is negligible. 
 
 
3) Algorithmic strategies to provide statistical support to cell-state hierarchies from single-cell RNAseq 
 
The fact that a cell-state hierarchy is obtained by using any given algorithm (e.g. MST, SST or IMC) does not 
necessarily imply that it reflects a true biological scenario of cell activation/differentiation. It might well be that the 
hierarchy obtained is mainly driven by noise due to either biological (Raj et al., 2006; Rand et al., 2012; Shalek et 
al., 2013; McDavid et al., 2014; Deng et al., 2014) or technical factors (Brennecke et al., 2013; Islam et al., 2014; 
Grün et al., 2014). The relative contribution of stochastic factors to the observed differences across cells is ex-
pected to be higher if cells within a sample are in a homogeneous steady-state. In that case, a low cell-to-cell 
heterogeneity will lead to cell-state hierarchies very sensitive to small variations in the initial gene expression da-
ta. On the other extreme, high levels of cell-to-cell heterogeneity driven by a real granularity in an activa-
tion/differentiation process will translate into robust hierarchies that can be reproduced despite stochastic pertur-
bations of the data.  
 
To help discriminate reliable cell-state hierarchies from noisy rearrangements, Sincell implements two approach-
es: i) a strategy relying on a gene resampling procedure and ii) an algorithm based on random cell substitution 
with in silico-generated cell replicates. 
 
A. Gene resampling  
 
This algorithm performs a random subsampling of a given number “n” of genes “s” times from the original gene 
expression matrix. For each subsampling, a new connected graph of cells is computed using the same method as 
for the hierarchy being tested. In each subsampling, the similarity between the resulting graph and the original 
one is assessed by the Spearman rank correlation between the two graphs of the shortest distance for all pairs of 
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cells. The distribution of Spearman rank correlation values of all subsamplings can be interpreted as the distribu-
tion of similarities between hierarchies that would be obtained from small changes in the data. A distribution with a 
high median and small variance would indicate a well-supported cell-state hierarchy. On the contrary, a distribu-
tion with a low median of similarities and/or a wide variance would indicate a hierarchy very sensitive to changes 
in the data, and therefore not well statistically supported. 
 
B. Random cell substitution with in silico-generated cell replicates 
 
Gene expression levels detected by single-cell RNA seq are subject to stochastic factors both technical and bio-
logical. This means that, if it were possible to profile the same cell in the same cell-state (or, more realistically, a 
population of individual cells in a highly homogeneous state) multiple times, the detected expression levels of a 
gene would randomly fluctuate within a distribution of values. In the ideal scenario where that distribution was 
known for each gene, individual cell replicates could be produced in silico, leading to variations in gene expres-
sion levels similar to what would be obtained from in vivo replicates. The generation of in silico replicates would 
then permit testing the reproducibility of the cell-state hierarchy upon random replacement of a fraction of the 
original cells with the replicates. 
 
B1. Generation of in silico cell replicates 
 
The distribution of the expression levels of a gene can be described by a measure of variability such as the vari-
ance or the coefficient of variation. It is known that the expected variation is dependent on the mean expression 
values of the gene (Anders and Huber, 2010; Brennecke et al., 2013). Based on this, we can simulate a stochas-
tic fluctuation of the expression of a gene by perturbing the observed level in a given cell with an error term whose 
magnitude is consistent with the mean-variance relationship observed in the data. By doing that for all genes from 
an individual cell Ci, we can produce an in silico replicate of it.  

 
To this end, Sincell implements the following alternative strategies:  
 

i) First, the mean m and variance v of all genes in the original gene expression matrix is computed. 
Genes are assigned to classes according to the deciles of the mean to which they belong. Next, for a 
given gene g, a variance v is randomly chosen from the set of variances within the class of the gene. 
Then, a random value drawn from a uniform distribution U(0,v) of mean zero and variance v is added 
to the expression value of a gene g in a cell c. By perturbing all genes in a reference cell c in this way, 
we obtain an in silico replicate c’. Repeating the process n times, n stochastic replicates are generat-
ed for each original cell.  
 

ii) Alternatively, the strategy described in i) can be modified so that a squared coefficient of variation cv2 
is randomly chosen from the set of coefficient of variation values within the class of the gene. Then, 
the variance v for the uniform distribution is assessed by v= (cv2 x m2). 

 
iii) Stochasticity in gene expression at the single-cell level has also been described as following a 

lognormal distribution log(x)~N(m,v) of mean m and variance v (Bengtsson et al., 2005; Raj et al., 
2006). More recently, (Shalek et al., 2014) described gene expression variability in single-cell RNA-
seq through a log normal distribution with a third parameter alpha describing the proportion of cells 
where transcript expression was detected above a given threshold. The authors found that the majori-
ty of genes in their study (91%) showed distributions well described by the three-parameter model (p 
< 0.01, goodness of fit test; (Shalek et al., 2014)). Sincell can use this three parameter model estima-
tion to generate random perturbations of gene expression levels and produce in silico cell replicates 
accordingly. 
 

iv) Other work has found that, for most genes, the variability observed among their expression levels 
across individual cells was better described by a negative binomial (NB) distribution rather than a 
lognormal distribution (Grün et al., 2014). Grün and colleagues used NB distribution to model not only 
technical noise but also true biological gene expression noise. Their assumption was that endoge-
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nous mRNA abundance follows a NB as supported by a physical model of bursting expression (Raj et 
al., 2006). A negative binomial noise model was also adopted in (Zeisel et al., 2015). As pointed out 
in these works, NB is frequently used to model overdispersed count data and has been previously 
used for bulk RNA-seq data (Anders and Huber, 2010; Robinson et al., 2010). We recommend this 
approach only if normalized count data is used (i.e. not length-normalized RPKM/FPKM). Sincell can 
follow an NB distribution parameterized on the observed gene expression levels to generate random 
perturbations and produce in silico cell replicates accordingly. If log-transformed normalized counts 
are used, Sincell would unlog the perturbed data through a NB and afterwards will redo the log trans-
formation. 

 
B2. Random cell substitution with in silico-generated cell replicates 
 
Once cell replicates have been generated, a Sincell algorithm performs a random replacement of a given number 
“n” cells in the original gene expression matrix with a randomly selected set of in-silico replicates “s” times. For 
each set of substitutions “s”, a new connected graph of cells is assessed using the same method as for the hier-
archy being tested. In each “s”, the similarity between the resulting graph and the original one is assessed as the 
Spearman rank correlation between the two graphs of the shortest distance for all pairs of cells. The distribution of 
Spearman rank correlation values of all replacements may be interpreted as the distribution of similarities be-
tween hierarchies that would be obtained from stochastic perturbations of a proportion of cells. A distribution with 
a high median and small variance would indicate a well-supported cell-state hierarchy. On the contrary, a distribu-
tion with a low median of similarities and/or a wide variance would indicate a hierarchy very sensitive to changes 
in the data, and therefore not well statistically supported. 
 
C. Use of spike-in molecules to deconvolute technical and biological noise. 
 
The use of spike-in molecules is recommended in single-cell RNA-seq to infer the amount of variability in the ex-
pression levels of one gene that is expected to arise from technical factors (Brennecke et al., 2013; Grün et al., 
2014; Islam et al., 2014). More recently, Ding et al. went a step further by using spike-ins to explicitly remove 
technical noise and compute de-noised gene expression levels (R software GRM, 
http://wanglab.ucsd.edu/star/GRM/ , (Ding et al., 2015). When spike-ins are available, we recommend first per-
forming a technical de-noise procedure on the expression matrix before using Sincell. In such a way, Sincell’s 
computations of cell-state hierarchies would mainly rely on biological variation.  
 
Notwithstanding, biological variation will contain two main components. First, the heterogeneity explained by truly 
different cell-states in a differentiation/activation process, which is the component we aim to capture in a hierar-
chy. Second, the intrinsic biological noise that is expected to arise even among cells in the same differentia-
tion/activation state. Intrinsic biological noise originates from the characteristics of gene expression mechanisms 
such as bursts of transcription (Raj et al., 2006), the stochasticity of signal transmission (Rand et al., 2012), bimo-
dality (Shalek et al., 2013), cell cycle effects (McDavid et al., 2014; Buettner et al., 2015) and random monoallelic 
expression (Deng et al., 2014). 
 
Therefore, even if technical noise has been removed, it is important to test whether the hierarchy is mainly deter-
mined by real cell-state heterogeneity or, on the contrary, it is an artifact of the intrinsic biological noise. To this 
end, the reproducibility of the cell-state hierarchy can be evaluated upon random perturbations of de-noised ex-
pression levels. Sincell’s strategies described above based on either i) random gene subsampling or ii) random 
cell substitution with in silico-generated cell replicates, would in that case test whether the hierarchy is robust to 
stochastic perturbations of the data mimicking the effect of intrinsic biological noise.  
 
Additionally, the user may eventually wish to test the reproducibility of the hierarchy assessed on the original ex-
pression data (i.e. not first performing a technical de-noising step) upon random perturbations based exclusively 
on technical noise. Estimates of technical noise for each gene can be obtained by modeling the dependence of 
the coefficient of variation (cv2) of spike-in molecules as a function of their average expression. For instance, in 
Brennecke et al. 2013, for each technical gene i (e.g. the spike-ins), the sample mean (m) and sample variance of 
its normalized counts are estimated. Then, the observed squared coefficients of variation (cv2) are fitted against 
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the sample mean (m) with a generalized linear model of the gamma family with identity link and parameterization 
cv2=ã1/m+ α0. Applying the fitted formula to the sample mean expression levels of a gene provides an estimate of 
cv2 arising from technical noise. Sincell permits the incorporation of a technical cv2 estimate per gene in the as-
sessment of in silico cell replicates based on normalized counts (i.e. following the previously described negative 
binomial distribution whose dispersion is parameterized using the estimated technical cv2). Alternatively, in the 
absence of spike-in molecules, Sincell implements the fit described in Brennecke et al. 2013 using the cv2 and m 
values of all genes in the input expression matrix to provide a surrogate of technical noise estimates. However, 
this alternative should not be used if the user has previously followed our recommendation in Section 1 of using 
such an approach to identify highly variable genes in order to decrease the size of the input matrix 
(http://pklab.med.harvard.edu/scw2014/subpop_tutorial.html; Section "Identifying highly variable genes"). 
 
D. Application of Sincell algorithms to provide cell-state hierarchies with statistical support on a real single-cell 
RNA seq data set 
 
We applied Sincell algorithms to provide cell-state hierarchies with statistical support to a publicly available single-
cell RNA-seq dataset from (Trapnell et al., 2014). The authors generated single-cell RNA-seq libraries for differen-
tiating myoblasts at 0, 24, 48 and 72 hours. Original data can be accessed at GEO database accession number 
GSE52529 (ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE52nnn/GSE52529/suppl/GSE52529_fpkm_matrix.txt.gz). 
Following (Trapnell et al., 2014) and the vignette of its associated Bioconductor package Monocle 
(http://www.bioconductor.org/packages/devel/bioc/html/monocle.html), the expression matrix is restricted to 575 
genes differentially expressed between cells from time 0 and the ensemble of cells of times 24, 48 and 72 hours 
of differentiation. Here, we analyze each time-point separately and evaluate the statistical evidence of cell-state 
heterogeneity within them.  
 
Four cell-state hierarchies were assessed for each timepoint separately (0, 24, 48 and 72h) on their log-
transformed FPKM values using the first two dimensions of a dimensionality reduction with Independent Compo-
nent Analysis (ICA) and a Minimum Spanning Tree (MST). To evaluate the statistical support of the arrangements 
obtained, two Sincell algorithms were applied: i) a gene resampling procedure and ii) a random cell substitution 
with in silico-generated cell replicates. Supplementary Figure 1A represents the distribution of similarities be-
tween a reference cell-state hierarchy and the 100 hierarchies obtained when a random set of 50% of genes are 
subsampled 100 times. Supplementary Figure 1B represents the distribution of similarities between a reference 
cell-state hierarchy and the 100 hierarchies obtained when 100% of the cells are replaced by a randomly chosen 
in silico replicate 100 times. Here we used a uniform distribution as described in Section 3.B.2.i)  
 
In both cases, late timepoints lead to hierarchies with a high median while early time points had a lower median 
and a higher variance. Results suggest that at early time points homogeneity of cell states is high, leading to hier-
archies more sensitive to perturbations of the data and therefore less statistically supported. However, late 
timepoints showed hierarchies more robust to both gene subsampling and replacement with in-silico replicates, 
reflecting a marked heterogeneity in cell states. Indeed, a gradient can be observed in both panels (from 0 to 24, 
48 and 72h) suggesting that heterogeneity in cell-states increased as a function of time. 
 
E. Note on the use of the Spearman rank correlation between the shortest distance for all pairs of cells as a simi-
larity measure between two graphs. This way of comparing graphs is taken from a similar approach used to com-
pare phylogenetic trees (Pazos et al., 2005; Juan et al., 2008) or against positions within a Multiple Sequence 
Alignment (del Sol Mesa et al., 2003). To provide evidence of its use as a valid similarity measure between 
graphs we assessed the distribution of Spearman rank correlation values obtained between a reference graph 
and a population of 100 hierarchies obtained when 100 random sets of a given percentage of genes are subsam-
pled 100 times. We did this for increasing percentages of subsampled genes: 5%, 25%, 50%, 75% and 95%. 
Supplementary Figure 2 shows these distributions reflecting the expected behavior, that is: the more representa-
tive the subsampling (higher number of sampled genes) the higher the similarity of the resulting hierarchies with 
the reference. 
 
Other metrics to compare graphs that could have been used include e.g.: i) the symmetric difference of two sets 
of edges, i.e. the set of edges present in either of the sets but not in their intersection. This distance evaluates the 
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topology of the graphs, but does not consider distances between nodes. And ii) least moves, i.e. the minimum 
number of changes that graph A needs to become graph B. This distance is useful to measure difference between 
topologies, and weighted edges can be used giving different values to the actions of resizing, removing or adding 
an edge (See Boorman and Olivier, 1973 for a discussion on this metrics). However, we decided to use our ap-
proach based on rank correlations because it is less sensitive to small variations in the topology as far as they 
occur in the vicinity (i.e. they don't translate in large path distances between the affected nodes). 
 
 
4) Functional association tests to help interpret cell-state hierarchies 
 
Once a cell-state hierarchy has been assessed and its statistical support checked, the next step is interpreting the 
hierarchy in functional terms. Sincell allows different graphical representations that can help interpret the hierar-
chies in terms of the features of the samples (e.g. differentiation time) or the expression levels of markers of inter-
est. In this section, we propose an analytical approach to test whether the cell-state hierarchy associates with a 
given functional gene set, that is: whether the relative similarities among the individual cells in the hierarchy are 
driven by the expression levels of a subset of genes with a common functional feature. 
 
Sincell implements an algorithm to evaluate this association. First, a new cell-state hierarchy is assessed where 
only the expression levels of the genes in a given functional gene set are considered. Second, the similarity of 
that hierarchy with the reference hierarchy (the one assessed on the initial gene expression matrix) is calculated. 
The similarity between the two hierarchies is computed as the Spearman rank correlation between the two graphs 
of the shortest distance for all pairs of cells. Third, an empirical p-value of the observed similarity between the two 
hierarchies is provided. The empirical p-value is derived from a distribution of similarities resulting from random 
samplings of gene sets of the same size. 
 
This Sincell algorithm is particularly suited to evaluate associations with gene set collections such as those from 
the Molecular Signatures Database (MSigDB) of the Broad Institute 
(http://www.broadinstitute.org/gsea/msigdb/collections.jsp), gene lists representing Gene Ontology terms of func-
tional pathways, and in general, any gene set collections that might be of particular interest for the user. 
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